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Diffraction models, dynamical structure tensors and 
electron-phonon interaction 

L V Meisel 
Research, Development and Engineering Center, Close Combat Armament Center, 
Benet Laboratories, Watervliet, NY 12189, USA 

Received 15 August 1989 

Abstract. A coherent exposition of the theory of scattering from a dynamic lattice, which 
applies to the scattering of Bloch-wave electrons as well as to the scattering of plane waves, 
is presented. This is achieved by developing a generalised diffraction model, along the lines 
conceived by Van Hove, appropriate for the scattering of Bloch waves. The resulting 
diffraction model provides a basis for treating processes controlled by electron-phonon 
interaction in general and subsumes the standard diffraction model results. The diffraction 
model origins of the standard approximate expressions used to describe electron-phonon 
interaction-controlled processes are also revealed. 

1. Introduction 

The diffraction model allows for a consistent treatment of diverse scattering phenomena. 
For example, when electron-phonon interaction is the scattering mechanism, the dif- 
fraction model provides for a unified treatment of electrical and thermal transport, 
phonon contributions to the electron effective mass, and acoustic attenuation in perfect 
and point- or line-defected crystalline alloys, and also in liquid, amorphous and dis- 
ordered alloys. 

The essence of diffraction model methods is factorisation of scattering rate matrix 
elements into terms such that the lattice vibrational properties are entirely contained in 
dynamical structure factors, which can be related to transforms of generalised pair 
distribution functions. 

The most celebrated dynamical structure factor is that defined by Van Hove [l], viz. 

S(K,  Q )  = Im d t  exp(iQt) ( r (K ,  t)r+ ( K ,  O)), 
--z 

where (O),  denotes thermal average in the equilibrium ensemble (i.e. (O),  = 
Q i ( i  10 I i)) and r (K,  t )  is the spatial Fourier transform of the ion density operator. The 
Van Hove dynamical structure factor S(K,  5 2 )  describes very general scattering pheno- 
mena in which the lattice absorbs pseudo-momentum K and energy 52. It is directly 
measurable via neutron scattering experiments. It encompasses Debye-Waller factors, 
Umklapp processes, coupling to transverse phonons, multiphonon effects, etc. Thus, 
S(K,  Q )  has been the object of intense theoretical interest. 
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Baym [2] elaborated a diffraction model approach to the treatment of electron- 
phonon interaction-controlled phenomena based upon the Van Hove dynamical struc- 
ture factor. Baym’s approach has proven to be extremely productive and has become 
standard. However, Baym’s form of diffraction model, based on the Van Hove 
dynamical structure factor, is strictly correct only for the scattering of plane (or pseudo- 
plane) waves (PW). To apply diffraction model techniques to electron-phonon inter- 
action-controlled processes in general, it is necessary to derive diffraction model 
expressions appropriate for treatment of the scattering of Bloch waves (BW). 

Therefore, the principal objective of this paper is to present a coherent exposition 
of a generalised diffraction model, which applies to PW or BW in perfect, disordered, or 
defected crystalline alloys and to PW in liquid or amorphous alloys. This aim is realised 
through the introduction of a generalised diffraction model, which applies to BW elec- 
tron-phonon interaction-controlled processes and reduces to the standard diffraction 
model in PW scattering cases. 

An important secondary objective is to reveal the diffraction model origins of the 
approximate expressions appearing in the standard literature. In particular, the standard 
equations used to describe electron-phonon interaction-controlled processes are shown 
to be approximate diffraction model expressions. 

This paper is organised as follows. The generalised diffraction model, which applies 
to Bloch-wave and plane-wave scattering, is presented in section 2. Generalised structure 
factors S(k ,  k ’ ,  Q )  and S’(k,  k ‘ ,  Q )  and structure tensors {Zn(K, Q ) l n  = 0, m} are 
defined. 

The special case of plane-wave scattering is discussed in section 3. The n-phonon 
structure tensors {@. , (K,  Q )  In = 0, x }  and the Debye-Waller tensor Ware defined and 
the standard Van Hove dynamical structure factor form S ( K ,  M) is deduced. 

Explicit expressions for {Z.,(K, Q), aa(K, Q )  1 n = 0,2} are given in section 4. 
The experimental determination of the various structure tensors and factors is 

discussed in section 5 .  
The diffraction model origins of the ‘standard expressions’ are revealed in section 6. 

The plane-wave scattering expressions (i.e. the standard diffraction model results) are 
derived in section 6.1, the expressions describing nearly free-electron scattering in 
crystalline alloys (Baym’s approximation) are derived in section 6.2, and in section 6.3 
the standard approximate expression describing Bloch-wave scattering in perfect crystals 
is derived. 

Electron-phonon spectral functions (usually denoted a’( M )F(M )), static structure 
factors (denoted S ( K ) ) ,  static structure tensors (which might be denoted Z.,(K), etc.), 
etc., are briefly discussed in section 7. 

Concluding remarks are given in section 8. 

2. The generalised diffraction model 

The development of diffraction model factorisations for scattering of Bloch waves (BW) 
is demonstrated in this section. The essential diffraction model ideas are contained in [ 11. 
The theoretical development follows that presented in chapters 19 and 20 of Quantum 
Theory ofSolids by Kittel[3]. The methods employed here were also used by Van Hove 
[l]. The crucial step in either reference is the application of Bloch’s theorem [4]. 

The notation will be streamlined: (i) Let q stand for (q ,  j) where q is a phonon 
wavevector and j is a phonon branch and polarisation index. (ii) Let k stand for ( k ,  s) 
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where kis the scattered particle wavevector and s is an appropriate index. For example, 
for electron states, s might represent the spin. (iii) Consider pure materials-the gen- 
eralisation required to treat alloys, via the introduction of partial structure factors, is 
straightforward and well known. (iv) The following shorthand notations are adopted: 

K = k - k ’  A = K + G - H  A’ = K + G’ - H’ 

where G ,  H, G’ and H’ are reciprocal lattice vectors (RLV). 
Scattering from an initial state containing a BW of wavenumber-index k ,  

I k ,  i) = a(G) exp[i(k + G )  * x] I i) 
G 

into a final state containing a BW of wavenumber-index k ‘ ,  

I k ’ , f )  = c P(G) exp[i(k’ + G )  * .I I f )  
G 

is treated. The sums are on RLV G .  
The perturbation H’ producing the scattering is assumed to be of the form 

H’ = [ V(x - Xl) - U ( x  - Z) ]  (3) 
I 

where xl is the position of the ion, which, in the absence of the lattice vibration, would 
be at position I ,  V ( x )  is the ionic potential and U(x) is the unperturbed potential. We 
think of these potentials as fully screened, etc., and use the same letters to denote the 
Fourier transforms, 

{ U ( A ) ,  V ( A ) }  = 1 dx exp(iA - x ) { U ( x ) ,  V(x)} .  (4a) 

The origin is chosen in such a way that 

A - I = K I + (integer) 2n. 

We also denote the difference in the transformed potentials (i.e. the transform of the 
undisplaced potentials) by 

W ( A )  = V ( A )  - U(A). (4b) 
Thus, using equations (2) to (4), 

( k ’ , f l H ’ l k , i ) =  P(G)*a(H) 
I , G , H  

x [ V ( A ) ( f  I exp(i‘4 * X l )  li) - U(A) exp(iK W f  191 ( 5 )  

and 

( k ’ , f l H ’ l k ,  i) exp[i(ei - ef ) t ]  = C P(G)*w) 
1, G, H 

x { V ( A ) ( f  I exp[iA * xd4l I i> - U ( A )  exp(iK * W f  1 i>) (6a) 

H o  ) i >  = ei  ii> (6b) 

Ho If) = Eflf). (6c) 

where x l ( t )  is in Heisenberg representation and we have used 
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It then follows that the scattering rate, neglecting factors accounting for occupation of 
the states k ,  k’ , etc. , is given by 

X ( k ,  k ’ ,  Q )  = c p i  l (k ’ ,  f i H ’ l k ,  i)I28(Ei - Ef - Q) 
i .  f 

= /.3(G)* a (H) [P(G’ )  * a(H‘)] * [ V(A)V(A’) *S‘(A , A’, Q ) 
G,H,G’ ,H’  

+ W(A) W(A ’) *a(K)d(  Q )]. (7)  
Here the geometrical structure factor a(K)  is defined in the usual way, i.e. 

U ( K )  = 2 exp[iK. (1 - 1’11 = N exp(iK d> 
I, I’ d 

the dynamical structure factor S’(A, A‘, Q )  is defined as 

S’(A,A’, 5 2 )  = S(A,A’, Q )  - a(K)G(Q) 

where the dynamical structure factor S(A, A’, Q )  is defined as 

S ( A , A ’ , Q ) = C e x p ~ i f ( . ( l -  l ’ ) ]  
1, I‘ 

x j $ exp(-iQt)(exp[-iA’ url(0)]exp[iA - U[(t)])T (9b) 

and ur(t) is the displacement of the ion at 1 due to the lattice vibrations, i.e. xr(t) = 
1 + u,((t). Note that equation (7)  allows for arbitrary combinations of disorder and 
defect scattering; for example, equation (7)  allows for straightforward application to 
scattering in impure and/or point-defect-containing crystalline solids at finite tempera- 
ture. 

S(A, A’, Q )  is a generalisation of the Van Hove dynamical structure factor [l] ,  i.e. 

S(K,  K ,  Q) = S(K,  Q )  (9c) 

and S’(A, A‘ , 8) is a generalisation of the modified Van Hove dynamical structure 
factor, defined by Baym [2], i.e. 

S’ (K ,  K ,  Q )  = S ’ ( K ,  Q). 

(exp[-iA’ - u l , (0 ) ]  exp[iA - U[(t)])T = exp[A’ - Z ( 1 -  l’, t )  -A)  

( 9 4  

(loa) 

Generalising the development in [3], one obtains 

where we have expanded U[ and invoked the theorem of Bloch [4] to obtain 

Z(d, t> = - 2 wq[(2nq f 1) - (nq + 1) exp(ied,t) - (nq) exp(-ied,t)]. (lob) 

wq = eqeq /2NMQq (10c) 

9 

Here 

d = E - 1’ is an ion spacing in the absence of thermal vibrations, Nis the number of ions, 
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M is the ion mass, Q,, nq and e, are respectively the phonon frequency, number density 
and polarisation vector at q ,  and 

9d , t  = d + Q,t. (104  

Note that Z(d ,  t) is a symmetric second-rank tensor that is independent of K ,  A and A’. 
Thus, we can express the dynamical structure factor S(A, A’, Q )  in the form 

d t  
S(A, A’, Q )  = N c exp(ik: d) 12 n exp( -iQt) exp[A 0 Z(d,  t) A’] (1la) 

d 

= [ A .  . . A ] .  . . Zn(K, Q )  . . . [A’. . . A’]/n! 
n = O  

where [A . . . A] is an n-fold open product of the vector A .  Equation ( l l b )  defines the 
structure tensor Zn(K, 5 2 )  of rank 2n and is obtained by expanding the exponential in 
equation ( l l a )  and performing the sum over dand the tintegration. (Note that the tensor 
Zn(K, GI)  is not uniquely defined by equation ( l lb ) :  however the most symmetric forms 
with respect to the left and right inner products are the obvious choice and are intended.) 

Combining equations (7) and ( l l ) ,  

X(k ,  k’ ,  Q )  = P(C)*a(H)[P(C’)*@(H’)]*[V(A)V(A’)*S’(A,A’, Q )  
G , H , G ’ , H ’  

+ W(A) W(A ‘ )*a(k)d(  GI )] 
CD 

= E ~ , ( k ,  IC’ )* .  . . Z J K ,  Q )  . . . ~ , ( k ,  k’)/n! + Iwo(k, kr)12 z~(K, Q )  
n = l  

(12) 

(13a) 

where we have defined the scalar 

WO@, k ’ )  = (k’ I W) I k )  

V , ( k ,  k ’ )  = (k’({[(iV). . . (iV)]V(x)}Ik) 

and for n = 1 to a, the rank-n tensor 

(13b) 

and we have used the relation 

P(G)*a(H)[A . . . A]V(A) = I dx( P(H) exp[i(k’ + H )  x]) * 
G.H H 

x {[(iV) . . . (iV)]V(x)}(z a(C) exp[i(k‘ + C )  - X I )  
G 

=(k’/{[(iV). . .(iV)]V(x)}lk) = V , ( K ) .  (13c) 

All the dynamical properties of the lattice are contained in the structure tensors 

Equation (12) with {Zn(K, 5 2 )  In = 0, x} defined in equations (10) and ( l l ) ,  W,(k, k ’ )  
defined in equation (13a) and the {Vn(k, k ’ )  In = 1, a} defined in equation (13b) con- 
stitute the generalised diffraction model expression and are the principal results of this 
paper. Note that to obtain actual scattering rates one must include appropriate factors 
(e.g. (2n/h)f(k)[l - f(k’)]) in equation (12). 

{In@, Q )  I n = o,w>. 
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3. Plane-wave scattering, n-phonon structure tensor @,(K, Q ), Debye-Waller tensor W 
and the Van Hove dynamical structure factor S ( K ,  a )  
Since the first term in equation (lob) is independent of d and t ,  it is useful to define the 
tensor 

and 

w = w,(2nq + 1). 
4 

Thus, equation (lob) can be rewritten in the form 

Z(d,  t )  = -w + Z'(d,  t)  (14c) 

and since the Debye-Waller exponent 2 W ( K )  is simply related to W ,  viz. 

2 W ( K ) = K * W * K  ( 1 4 4  

we designate W the (second-rank) Debye-Waller tensor. 
Equations (14) suggest that a different factorisation of the scattering rate will be 

particularly appropriate in the PW case. The treatment of pw scattering leads in a natural 
way to the introduction of the n-phonon structure tensor @,(K,  a ) ,  which is also useful 
in expressing limiting BW expressions. Thus, equation ( 2 a )  becomes 

1 k ,  i) = exp(ik - x) I i) etc. U5a> 

and 

Thus, recalling equation (9), equation (11) yields 

S ( K ,  $2) = N exp(X - d) exp(-iQt) exp[K Z(d,  t )  K ]  (16a) 
d 

= 2 [ K .  . . K ]  . . . Zn(K,  Q )  . . . [ K .  . . K ] / n ! .  
n=O 

Employing equations (14c) and (14d), equation (16a) yields 

S(K,  Q )  = exp[ - 2 W ( K ) ]  N exp(X 8 d )  exp( -iQt) exp[K - Z'(d,  t )  - K ]  
d 

= exp[-2W(K)] [K . . . K ]  . . . @ , ( K ,  5 2 ) .  . . [K . . . K ] / n ! .  (16c) 
n=O 

Equations (14a) and (16c) serve to define the a n ( K ,  Q ) ,  which is designated as the n- 
phonon structure tensor, and exp[ - 2 W ( K ) ]  (=exp( -K - W - K ) )  is the Debye-Waller 
factor. (We can also relate the {Zn(K, Q )}to the {@,(K, 5 2 ) )  by expanding exp[ - 2 W ( K ) ] ,  
forming the product and identifying the tensor coefficients.) 
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4. The low-order structure tensors 

Since the structure tensors play a central role in diffraction models, it is worth while to 
display the expressions for the first few in some detail. The expressions are deduced by 
examination of expansions in equations (16). 

4.1. The zero-rank structure tensor Io(K, Q) and zero-phonon structure tensor (Do(K, S Z )  

defines the zero-rank structure tensor Zo(K, 5 2 )  and zero-rank zero-phonon structure 
tensor (Do(K, Q). 

4.2. Second-rank structure tensor Zl(K, Q) and one-phonon structure tensor Ql(K, Q) 

d t  
d Jr 

= N c exp(ik: 4 I exp(-iQt) 

4.3. Fourth-rank structure tensor Z2(K, Q) and the two-phonon structure tensor Q2(K, 
Q) 
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where 

where Wi.h is the i ,  h component of the Debye-Waller tensor. (One might designate 
[W2]i,it,ht,h as the fourth-rank Debye-Waller tensor.) 

5. Experimental evaluation of S ( K ,  Q) ,  Z,@, Q ) ,  Wand @,(K, Q )  

As is well known, S ( K ,  Q) may be directly determined by neutron scattering experi- 
ments. It is also clear that , in principle, one may deduce the tensorZ,(K, Q ) from analysis 
of the expression for S ( K ,  Q )  contained in equation (166).  Similarly one could deduce 
W and the cP,(K, Q )  from analysis of the expression for S(K,  5 2 )  contained in equation 
(16c) or from the Z,@, Q) .  Of course, in practice, the experimental determination of 
S ( K ,  Q )  is exacting and the experimental evaluation of Zn(K, 52) or @,(K, Q )  for n > 1 
may be impracticable. Nevertheless, it is important to note that the same tensorZ,(K, 52) 
or W and @,(K, Q )  appear in the BW expression as in the PW expression and that, in 
principle, one can deduce the tensor appropriate for treating the BW case from the 
analysis of PW scattering experiments. 

6. The standard expressions 

6.1. Plane-wave cases 

6.1 . I .  The standard form: electron scattering in liquid and amorphous metals and neutron 
scattering 

When PW are appropriate basis functions, equations (15) are appropriate and the two 
forms of equations (166) and (16c) define the appropriate structure factor, i.e. the 
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Van Hove dynamical structure factor [l]. Furthermore, when a PW basis is employed, 
vanishing unperturbed potential (U(x )  = 0) is appropriate, and thus 

Wo(k,  k ’ )  = Vo(k, k ’ ) +  V(K). 

V , ( k ,  k ’ )  = [AA . . . A]V(k, k ’ )  + [ K K .  . . K]V(K) = V ,  ( K )  

(20a) 

(20b) 

Also, recalling equation (13) 

so that, employing equations (20) and (16b), equation (12) becomes 

X ( K ,  Q )  = X ( k ,  k ’ ,  Q )  

= 2 v,(k,k’)*.  . . z~(K, Q ) .  . . ~ , ( k , k ’ ) / n !  + / W ~ ( ~ , ~ ’ ) I ~ Z ~ ( K ,  Q )  
n = l  

m 

(21) 

1 = I V ( K ) / ~  (c/ [ K K . .  . K].  . . z n ( ~ ,  Q ) .  . . [ K K . .  . ~ ] / n !  + i o ( K ,  Q )  
n = l  

= I V(K) / *  S ( K ,  a) .  
Equation (21) is immediately recognised as the standard form for electron scattering in 
liquid and amorphous metals and neutron scattering; i.e. as they must, the BW 
expressions reduce to the standard forms in the special case of PW. 

6.1.2. Approximate forms 

The approximate forms are based on equation (16c) for PW. 
(a) Markowitz’s approximation. Markowitz [5]  observed that the temperature vari- 

ation of the electrical resistivity of relatively high-resistivity amorphous metals could be 
reasonably represented by neglecting all but the elastic scattering term in the expression 
for S(K,  Q),  i.e. 

S ( K ,  S2) = exp[-2W(K)]Qo(K, Q )  (22) 
where Qo(K, Q )  is defined in equation (17). (Generalisation for anisotropic materials is 
obvious.) The fact that such a drastic approximation yields reasonable agreement with 
experiment suggests a breakdown of conventional theory of electrical transport in the 
relatively high-resistivity amorphous metals studied. 

(b) Sham-Ziman approximation. The Sham-Ziman [6] approach to approximating 
the multiphonon contributions to the scattering rate is the most popular. Arguments are 
presented in [6] to support this procedure, but the simplicity of the resulting forms and 
their relatively good performance is at the core of their wide acceptance. One assumes 
that the effect of the multiphonon series is to cancel the effect of the Debye-Waller 
factor in the one-phonon term in equation (16c), i.e. 

S ( K , R )  -exp[-2W(K)]Qo(K,Q) + K . Q I ( K , S 2 ) . K  (23a) 
where Qo(K,  5 2 )  and cPI(K, Q )  are defined in equations (17) and (18b). For isotropic 
materials (e.g. amorphous metals), equation (23a) becomes 

S ( K ,  Q )  - exp[-2W(~)]Q~(K,  a )  + cP1(K, Q ) K 2 .  (230) 
(c) Other approximations. Other approximations are employed. Sometimes the 

multiphonon contributions are simply ignored. Cote and Meisel [7] have compared an 
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approximation proposed by Hernandez-Calderone et a1 [8] with Sham-Ziman approxi- 
mation [6].  Little basis for selection of one over the other could be found in fitting 
experimental data. 

6.2. Baym’s form: the nearly free-electron (NFE)  case 

Here we consider an important special case of PW scattering. Strictly speaking PW are 
not appropriate electron basis functions for the treatment of crystalline materials. 
Nevertheless PW are frequently a reasonable approximation. We shall refer to such 
instances as NFE cases. 

The NFE procedure for treating scattering of electrons due to lattice vibrations in 
perfectly crystalline solids is to use PW as approximate basis functions of the unperturbed 
Hamiltonian Ho,  which has a potential of the form 

c. U(x - 1) where V(x)  = U@). (24) 
1 

Thus, W(K) = 0, and equation (13) becomes 

X ( k , k ’ ,  Q )  = 

CD 

V , ( k ,  k ’ ) * .  . . Zfl (K,  Q ) .  . . V , ( k ,  k ’ ) / n !  
fl=l 

where one uses 

V , ( k ,  k ’ )  = V , ( K )  = [ K .  . . K]V(K)  

which holds for PW. Note that the elastic term (n = 0) is absent from equation (25). 
Equation (25)  is frequently applied in crystalline metals (e.g. [ 2 ] ) ;  we refer to this form 
as Baym’s approximation or the NFE approximation. 

6.3. Bloch-wave scattering in perfect crystals 

6.3.1. The standard form.  The procedure for treating scattering of electrons due to 
lattice vibrations in perfectly crystalline solids (for which a NFE model is inadequate) is 
to use (approximate) BW solutions of the unperturbed Hamiltonian Ho as basis functions, 
where H o  has a potential of the form 

c U(X - 1) where V(x)  = U(x).  (26) 
I 

Thus, W(K) = 0, and equation (13) becomes 
m 

~ ( k , k ’ ,  Q )  = v , ( k , k ’ ) * .  . . z~(K, Q ) .  . . ~ , ( k ,  k’) /n! .  (27) 
n = l  

Note that equations (26) and (27) are identical to equations (24) and (25a); however, 
since equation (25d) does not obtain for BW, the forms in equation (2%) and (25c) do 
not obtain for BW. As in Baym’s approximation, the elastic term (n = 0) is absent from 
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equation (27), i.e. the ‘natural’ Bloch electrons are not elastically scattered in perfect 
crystals. Equation (23) is the appropriate form to substitute for a(K)  in the expressions 
forZ,(K, 52) in the perfect crystal case. 

6.3.2. Approximate forms: Sham-Ziman approximation. The Sham-Ziman approxi- 
mation [6] was originally introduced in the context of perfect crystals. The Sham-Ziman 
approximation for BW scattering yields 

X ( k ,  k ’ ,  Q )  = V l ( k ,  k’)* Q )  * V l ( k ,  k ’ ) .  (28) 
Thus, substituting equation (23) for a@), one finds 

- (n,)6(K + G - q)6(Q + SZ,)]. (29b) 
Equation (29) is in the form usually employed to treat electron-phonon interaction- 
controlled scattering of Bloch electrons in crystalline metals; i.e. the typical study of 
electron-phonon interaction-controlled processes employing BW electrons implicitly 
assumes perfect crystallinity and invokes the Sham-Ziman approximation. For example, 
equation (29) gives the ‘first-principles’ form? used in the work of Butler et a1 [9]. (One 
assumes that in [9], 6 ( K  - q)  stands for a summation over RLV G on 6 ( K  + G - q)  .) Thus, 
the diffraction model origin and the nature of the multiphonon scattering approximation 
implicitly adopted in standard treatments of electron-phonon interaction-controlled 
processes are revealed. 

7. Electron-phonon spectral functions and static structure factors 

When dealing with electron-phonon interaction-controlled phenomena it is customary 
to define various electron-phonon spectral functions, denoted a2(52)F(Q) .  For 
example, the Eliashberg function [lo] is an electron-phonon spectral function. The 
a2(S2)F(S2 ) may be defined by integrating appropriately weighted diffraction model 
scattering rates over K .  These electron-phonon spectral functions are of theoretical 
importance; however, the procedures followed in applying them often obscure the 
diffraction model origins of the analyses. 

On the other hand, when dealing with electron-phonon interaction-controlled 
phenomena it is also possible to define static structure factors, which would be denoted 
S ( K ) ,  Zm(K), or @,(K).  The various static structures factors (or tensor) may be defined 
by integrating appropriately weighted diffraction model scattering rates over 52. The x- 
ray and resistivity static structure factors for amorphous metals, as discussed by Meisel 
and Cote [ll], are examples. The static structure factors, which are wholly determined 
by the lattice dynamics, are also of theoretical interest and emphasise the diffraction 
model origins of the analysis being performed. 

t These authors employ this form in a number of papers, of which [9] is typical. 
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8. Concluding remarks 

A generalised diffraction model appropriate for BW electron as well as PW scattering 
from a dynamic lattice has been presented. It is shown that the resulting model reduces 
to the standard diffraction model in the case of PW scattering. These findings have the 
virtue of unifying the treatment of diverse phenomena. For example, neutron scattering 
in amorphous solids and electron-phonon interaction contributions to electrical trans- 
port in perfect crystals are conveniently treated in the context of the generalised dif- 
fraction model. 

Furthermore, it has been explicitly demonstrated that many important standard 
expressions appearing in the literature are obtained as approximations to the diffraction 
model. Thus, the diffraction model origins of the standard expressions is revealed and 
the nature of the implicit approximations in the standard forms is clarified. 
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